The frontline of permafrost thaw: a transect of eddy covariance towers across the southern Taiga Plains to better understand changing regional carbon and water budgets
Principal Investigator: Sonnentag, Oliver (32)
Licence Number: 16434
Organization: Université de Montréal
Licensed Year(s): 2024 2023 2022 2021 2019 2018 2018 2017 2016 2015
Issued: Dec 14, 2018

Objective(s): To determine the net effect of permafrost thawing-induced biophysical and biogeochemical feedbacks to the climate system.

Project Description: Through this project the following objectives will be addressed: What is the net effect of permafrost thawing-induced biophysical and biogeochemical feedbacks to the climate system? How do these two types of feedback differ between the sporadic and discontinuous permafrost zones? Is the reported decrease (increase) in net carbon dioxide (methane) exchange based on plot- (<1m2) and ecosystem-scale (1km2) flux measurements made over mostly tundra sites in the continuous permafrost zone generalizable to boreal forest and peatland ecosystems with sporadic and discontinuous permafrost? Do the net ecosystem carbon dioxude and methane exchanges of boreal forest and peatland ecosystems in different permafrost zones respond differently to higher/lower precipitation inputs than, for example, thawing/growing season lengths? Identical to Scotty Creek, Havkipak Creek and Trail Valley Creek, the core component of my project at Smith Creek is a 15-m micrometeorological tower on which the eddy covariance system and supporting instrumentation will be installed. The eddy covariance system comprises a three-dimensional sonic anemometer to measure wind velocities, an open-path gas analyzer for carbon dioxide and water vapour concentrations and an open-path gas analyzer for methane concentrations. The covariance of the vertical wind velocities and the different concentrations will allow for the calculation of the respective fluxes between the landscape and the atmosphere. These quasi-continuous measurements are complemented by repeated surveys of surface and frost table topography, vegetation, micrometeorological and environmental conditions to understand the influence of spatial and temporal permafrost dynamics on vegetation composition and structure, by remote sensing-based footprint analysis to characterize landscape heterogeneity/homogeneity, and by continuous near-surface remote sensing to interpret eddy covariance measurements in a phenological framework. The vulnerability of permafrost landscapes to climate change has been widely acknowledged but the understanding of its consequences for boreal forest ecosystem structure, functioning and services is still insufficient. Based on an extensive network of contacts across the Northwest Territories, research results of this project will be presented informally in public meetings to local communities but also to local federal and territorial government agencies. The fieldwork for this study will be conducted from January 1, 2019 to December 31, 2019.